Полупроводниковые материалы - Definition. Was ist Полупроводниковые материалы
Diclib.com
Wörterbuch ChatGPT
Geben Sie ein Wort oder eine Phrase in einer beliebigen Sprache ein 👆
Sprache:

Übersetzung und Analyse von Wörtern durch künstliche Intelligenz ChatGPT

Auf dieser Seite erhalten Sie eine detaillierte Analyse eines Wortes oder einer Phrase mithilfe der besten heute verfügbaren Technologie der künstlichen Intelligenz:

  • wie das Wort verwendet wird
  • Häufigkeit der Nutzung
  • es wird häufiger in mündlicher oder schriftlicher Rede verwendet
  • Wortübersetzungsoptionen
  • Anwendungsbeispiele (mehrere Phrasen mit Übersetzung)
  • Etymologie

Was (wer) ist Полупроводниковые материалы - definition

СТАТЬЯ-СПИСОК В ПРОЕКТЕ ВИКИМЕДИА

ПОЛУПРОВОДНИКОВЫЕ МАТЕРИАЛЫ         
полупроводники, применяемые для изготовления электронных приборов и устройств. Используют главным образом кристаллические полупроводниковые материалы (напр., легированные монокристаллы кремния или германия, химические соединения некоторых элементов III и V, II и VI групп периодической системы). Все большее значение приобретают твердые аморфные полупроводниковые вещества и органические полупроводники.
Полупроводниковые материалы         

Полупроводники, применяемые для изготовления электронных приборов и устройств. В полупроводниковой электронике (См. Полупроводниковая электроника) используют главным образом кристаллические П. м. Большинство из них имеет кристаллическую структуру с тетраэдрической координацией атомов, характерной для структуры Алмаза.

Значительную роль в развитии полупроводниковой техники сыграл Селен: селеновые выпрямители долгое время оставались основными полупроводниковыми приборами, получившими массовое применение.

В начале 70-х гг. 20 в. наиболее распространённые П. м. - Кремний и Германий. Обычно их изготовляют в виде массивных Монокристаллов, легированных различными примесями. Легированные монокристаллы Si с удельным сопротивлением 10-3-104 омсм получают преимущественно методом вытягивания из расплава (по Чохральскому), а легированные монокристаллы Ge с удельным сопротивлением 0,1-45 омсм получают, кроме того, зонной плавкой (См. Зонная плавка). Как правило, примесные атомы V группы периодической системы (Р, As и Sb) сообщают кремнию и германию электронную проводимость, а примесные атомы III группы (В, Al, Ga, In) - дырочную. Si и Ge обычно используют для изготовления полупроводниковых диодов (См. Полупроводниковый диод), Транзисторов, интегральных микросхем и т.д.

Большую группу П. м. составляют химические соединения типа AIII BV (элементов III группы с элементами V группы) - арсениды, фосфиды, антимониды, нитриды (GaAs, InAs, GaP, lnP, InSb, AlN, BN и др.). Их получают различными методами изготовления монокристаллов как из жидкой, так и из газовой фазы. Синтез и выращивание монокристаллов обычно производят в замкнутых сосудах из высокотемпературных химически инертных материалов, обладающих высокой прочностью, поскольку давление насыщенного пара над расплавом таких элементов, как Р и As, сравнительно велико. Примеси элементов II группы придают этим П. м., как правило, дырочную проводимость, а элементов IV группы - электронную. П. м. этой группы используют в основном в полупроводниковых лазерах (См. Полупроводниковый лазер), светоизлучающих диодах (См. Светоизлучающий диод), Ганна диодах, фотоэлектронных умножителях (См. Фотоэлектронный умножитель), в качестве плёночных детекторов излучения в рентгеновской, видимой и инфракрасной областях спектра электромагнитных волн.

П. м. типа AiiBvi из которых наиболее широко применяют соединения ZnO, ZnS, CdS, CdSe, ZnSe, HgSe, CdTe, ZnTe, HgTe, получают преимущественно с помощью химических реакций в газовой фазе или сплавлением компонентов. Удельное сопротивление и тип проводимости этих П. м. определяются не столько легирующими примесями, сколько характерными для них структурными дефектами, связанными с отклонением их состава от стехиометрического (см. Стехиометрия). Использование П. м. этого типа связано главным образом с их оптическими свойствами и фоточувствительностью. Поэтому их применяют в Фоторезисторах, Фотоэлементах, электроннолучевых приборах и приборах ночного видения, модуляторах оптического излучения (см. Модуляция света) и т.д.

К П. м. относят также некоторые аморфные стеклообразные халькогенидные системы, например сплавы Р, As, Sb, Bi с Ge, S, Se, Te, и оксидные системы, например V2O5 - P2O5 - RxOy, где R - металлы I - IV групп, х - число атомов металла и у - число атомов кислорода в окисле. Их используют главным образом в качестве оптических покрытий в приборостроении.

Таблица некоторых физических свойств важнейших полупроводниковых материалов

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

| Элемент, | Наиме- | Ширина | Подвижность | Кристал- | Постоян- | Темпера- | Упругость |

| тип | нование | запрещенной | носителей | лическая | ная | тура | пара при |

| соедине- | материа- | зоны, эв | заряда, 300 K, | структура | решётки, | плавле- | темпера- |

| ния | ла | | см2/(всек) | | | ния, °С | туре плавле- |

| | |---------------------------------------------------------| | | | ния, атм |

| | | при | при 0 К | элек- | дырки | | | | |

| | | 300 К | | троны | | | | | |

|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| Элемент | С (алмаз) | 5,47 | 5,51 | 1800 | 1600 | алмаз | 3,56679 | 4027 | 10-9 |

| |----------------------------------------------------------------------------------------------------------------------------------------------------------------|

| | Ge | 0,803 | 0,89 | 3900 | 1900 | типа алмаза | 5,65748 | 937 | |

| |----------------------------------------------------------------------------------------------------------------------------------------------------------------|

| | Si | 1,12 | 1,16 | 1500 | 600 | " | 5,43086 | 1420 | 10-6 |

| |----------------------------------------------------------------------------------------------------------------------------------------------------------------|

| | α-Sn | | Полупроводниковые материалы0,08 | | | " | 6,4892 | | |

|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| IV-IV | α-SiC | 3 | 3,1 | 400 | 50 | типа | 4,358 | 3100 | |

| | | | | | | сфалерита | | | |

|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| III-V | AISb | 1,63 | 1,75 | 200 | 420 | типа | 6,1355 | 1050 | <0,02 |

| | | | | | | сфалерита | | | |

| |----------------------------------------------------------------------------------------------------------------------------------------------------------------|

| | BP | 6 | | | | " | 4,538 | >1300 | >24 |

| |----------------------------------------------------------------------------------------------------------------------------------------------------------------|

| | GaN | 3,5 | | | | типа | 3,186 (по | >1700 | >200 |

| | | | | | | вюртцита | оси a) | | |

| | | | | | | | 5,176 (по | | |

| | | | | | | | оси с) | | |

| |----------------------------------------------------------------------------------------------------------------------------------------------------------------|

| | GaSb | 0,67 | 0,80 | 4000 | 1400 | типа | 6,0955 | 706 | <4․10-4 |

| | | | | | | сфалерита | | | |

| |----------------------------------------------------------------------------------------------------------------------------------------------------------------|

| | GaAs | 1,43 | 1,52 | 8500 | 400 | то же | 5,6534 | 1239 | 1 |

| |----------------------------------------------------------------------------------------------------------------------------------------------------------------|

| | GaP | 2,24 | 2,40 | 110 | 75 | " | 5,4505 | 1467 | 35 |

| |----------------------------------------------------------------------------------------------------------------------------------------------------------------|

| | InSb | 0,16 | 0,26 | 78000 | 750 | " | 6,4788 | 525 | <4․10-5 |

| |----------------------------------------------------------------------------------------------------------------------------------------------------------------|

| | InAs | 0,33 | 0,46 | 33000 | 460 | " | 6,0585 | 943 | 0,33 |

| |----------------------------------------------------------------------------------------------------------------------------------------------------------------|

| | InP | 1,29 | 1,34 | 4600 | 150 | " | 5,8688 | 1060 | 25 |

|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| II-VI | CdS | 2,42 | 2,56 | 300 | 50 | типа | 4,16 (по | 1750 | |

| | | | | | | вюртцита | оси a) | | |

| | | | | | | | 6,756 (по | | |

| | | | | | | | оси с) | | |

| |------------------------------------------------------------------------------------------------------------------------------------------| |

| | CdSe | 1,7 | 1,85 | 800 | | типа | 6,05 | 1258 | |

| | | | | | | сфалерита | | | |

| |------------------------------------------------------------------------------------------------------------------------------------------| |

| | ZnO | 3,2 | | 200 | | кубич. | 4,58 | 1975 | |

| |------------------------------------------------------------------------------------------------------------------------------------------| |

| | ZnS | 3,6 | 3,7 | 165 | | типа | 3,82 (по | 1700 | |

| | | | | | | вюртцита | оси a) 6,26 | | |

| | | | | | | | (по оси с) | | |

|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|

| IV-VI | PbS | 0,41 | 0,34 | 600 | 700 | кубич. | 5,935 | 1103 | |

| |------------------------------------------------------------------------------------------------------------------------------------------| |

| | PbTe | 0,32 | 0,24 | 6000 | 4000 | то же | 6,460 | 917 | |

------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------

П. м. в широких пределах изменяют свои свойства с изменением температуры, а также под влиянием электрических и магнитных полей, механических напряжений, облучения и др. воздействий. Этим пользуются для создания различного рода Датчиков.

П. м. характеризуются следующими основными параметрами: удельным сопротивлением, типом проводимости, шириной запрещенной зоны, концентрацией носителей заряда и их подвижностью, эффективной массой и временем жизни. Ряд характеристик П. м., например ширина запрещенной зоны и эффективная масса носителей, относительно слабо зависит от концентрации химических примесей и степени совершенства кристаллической решётки. Но многие параметры практически полностью определяются концентрацией и природой химических примесей и структурных дефектов. Некоторые физические свойства важнейших П. м. приведены в таблице.

В электронных приборах П. м. используют как в виде объёмных монокристаллов, так и в виде тонких моно- и поликристаллических слоев (толщиной от долей мкм до нескольких сотен мкм), нанесённых на различные, например изолирующие или полупроводниковые, подложки (см. Микроэлектроника). В таких устройствах П. м. должны обладать определёнными электрофизическими свойствами, стабильными во времени и устойчивыми к воздействиям среды во время эксплуатации. Большое значение имеют однородность свойств П. м. в пределах монокристалла или слоя, а также степень совершенства их кристаллической структуры (плотность дислокаций, концентрация точечных дефектов и др.).

В связи с высокими требованиями к чистоте и совершенству структуры П. м. технология их производства весьма сложна и требует высокой стабильности технологических режимов (постоянства температуры, расхода газовой смеси, продолжительности процесса и т.д.) и соблюдения специальных условий, в частности т. н. полупроводниковой чистоты аппаратуры и помещений (не более 4 пылинок размером свыше 0,5 мкм в 1 л воздуха). Продолжительность процесса выращивания монокристаллов в зависимости от их размеров и вида П. м. составляет от нескольких десятков мин до нескольких сут. При обработке П. м. в промышленных условиях используют процессы резания П. м. алмазным инструментом, шлифовки и полировки их поверхности абразивами, термической обработки, травления щелочами и кислотами.

Контроль качества П. м. весьма сложен и разнообразен и выполняется с помощью специализированной аппаратуры. Основные контролируемые параметры П. м.: химический состав, тип проводимости, удельное сопротивление, время жизни носителей, их подвижность и уровень легирования. Для анализа состава П. м. обычно пользуются оптическими, спектральными, масс-спектроскопическими и активационными методами. Электрофизические характеристики измеряют т. н. зондовыми методами или используют Холла эффект. Совершенство структуры монокристаллов исследуют методами рентгеноструктурного анализа и оптической микроскопии. Толщину слоев измеряют либо бесконтактными оптическими методами, либо методами сошлифовки слоя.

Лит.: Технология полупроводниковых материалов, пер. с англ., М., 1961; Родо М., Полупроводниковые материалы, пер. с франц., М., 1971; Зи С. М., Физика полупроводниковых приборов, пер. с англ., М., 1973; Палатник А. С., Сорокин В. К., Основы пленочного полупроводникового материаловедения, М., 1973; Кристаллохимические, физико-химические и физические свойства полупроводниковых веществ, М., 1973.

Ю. Н. Кузнецов, А. Ю. Малинин.

Полупроводниковые материалы         
Полупроводниковые материалы — вещества с чётко выраженными свойствами полупроводника. Удельная электрическая проводимость σ при 300 К составляет 10−4−10−10 Ом−1·см−1 и увеличивается с ростом температуры.

Wikipedia

Полупроводниковые материалы

Полупроводниковые материалы — вещества с чётко выраженными свойствами полупроводника. Удельная электрическая проводимость σ при 300 К составляет 10−4- 1010 Ом−1·см−1 и увеличивается с ростом температуры. Для полупроводниковых материалов характерна высокая чувствительность электрофизических свойств к внешним воздействиям (нагрев, облучение, деформации и т. п.), а также к содержанию структурных дефектов и примесей.

Beispiele aus Textkorpus für Полупроводниковые материалы
1. Но настоящим прорывом в хай-технологиях эксперты называют широкозонные полупроводниковые материалы на основе карбида кремния.
2. В области технологий разрабатываем новые полупроводниковые материалы, новые типы памяти, моделируем современные материалы - на компьютерном уровне, естественно.
3. Расположенный в саксонском Дрездене бывший крупнейший в ГДР завод по производству микросхем сегодня главный производственный центр американской компании AMD, покрывающий весь спрос компании на полупроводниковые материалы.
Was ist ПОЛУПРОВОДНИКОВЫЕ МАТЕРИАЛЫ - Definition